n を正の整数とする。曲線 $C_n: y=xe^{nx}$ に対して, 曲線 C_n の変曲点 における接線をℓ₁とする。次の問いに答えよ。

- (1) ℓ_n の傾きは n によらない一定値であることを示せ。
- (2) ℓ_n , C_n , x軸で囲まれる部分の面積を S_1 とする。 また, ℓ_n , C_n , y 軸で囲まれる部分の面積を S_2 とするとき, $\frac{S_1}{S_0}$ の値はn によらない一定値であることを示し,その値を求めよ。

< 自作 >

【戦略】

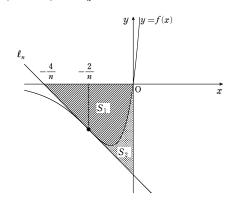
(1) 素直に, f''(x) = 0 となるx を求めにいきます。

 $f'(x) = (nx+1)e^{nx}$, $f''(x) = (nx+2)ne^{nx}$ となりますから ℓ_n の 傾きは $f'\left(-\frac{2}{n}\right) = -e^{-2}$ ということになり $f'\left(-\frac{2}{n}\right)$ 題意が示されます。

(2) 普通に S_1 , S_2 をそれぞれ求めにいって $\dfrac{S_1}{S_2}$ を計算するという直接的な 考えで問題ないでしょう。

f'(x), f''(x) が得られていることから増減表も得ることができます。

これにより、全体像、及び ℓ_n の位置関係を図示すると



ということになります。

 S_1 は面積計算において,下側の曲線を与える式が ℓ_n から C_n に変化 するため、 S_2 を求めて三角形から引いてやるのが得策です。

【解答】

$$f''(x) = n \cdot e^{nx} + (nx+1) \cdot (ne^{nx})$$
$$= (nx+2) ne^{nx}$$

よって,変曲点は $\left(-\frac{2}{n}, -\frac{2}{n}e^{-2}\right)$ であり, ℓ_n の傾きは

$$f'\left(-\frac{2}{n}\right) = \left\{n \cdot \left(-\frac{2}{n}\right) + 1\right\} e^{n \cdot \left(-\frac{2}{n}\right)}$$
$$= -e^{-2}$$

であり, n によらない一定値である。

(2) f(x)の増減表は

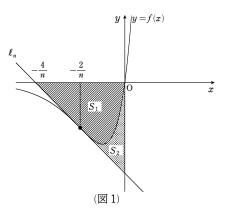
x	$(-\infty)$		$-\frac{2}{n}$		$-\frac{1}{n}$	•••	(∞)
f'(x)		_	_	_	0	+	
f ''(x)		_	0	+	+	+	
f(x)	(0)	7	$-\frac{2}{n}e^{-2}$	4	$-\frac{1}{n}e^{-1}$	Ŋ	(∞)

のようになる。

また, ℓ_n の式は

$$y = -\frac{1}{e^{2}} \left(x + \frac{2}{n} \right) - \frac{2}{ne^{2}}$$
$$= -\frac{1}{e^{2}} x - \frac{4}{ne^{2}}$$

ゆえに, y = f(x), ℓ_n のグラフ, 及び S_1 , S_2 は以下の(図 1)の ようになる



$$S_{2} = \int_{-\frac{2}{n}}^{0} \left\{ xe^{nx} - \left(-\frac{1}{e^{2}}x - \frac{4}{ne^{2}} \right) \right\} dx$$
$$= \int_{-\frac{2}{n}}^{0} \left(xe^{nx} + \frac{1}{e^{2}}x + \frac{4}{ne^{2}} \right) dx$$

ここで

$$\int xe^{nx} dx = \int x \left(\frac{1}{n}e^{nx}\right)' dx$$

$$= \frac{1}{n}xe^{nx} - \int \frac{1}{n}e^{nx} dx$$

$$= \frac{1}{n}xe^{nx} - \frac{1}{n} \cdot \frac{1}{n}e^{nx} + C$$

$$= \frac{1}{n}\left(x - \frac{1}{n}\right)e^{nx} + C \quad (C は積分定数)$$

であることに注意すると、

$$\begin{split} S_2 &= \left[\frac{1}{n} \left(x - \frac{1}{n} \right) e^{nx} + \frac{1}{2e^2} x^2 + \frac{4}{ne^2} x \right]_{-\frac{2}{n}}^0 \\ &= \left[\frac{1}{n} \left(\frac{1}{n} - x \right) e^{nx} - \frac{1}{2e^2} x^2 - \frac{4}{ne^2} x \right]_0^{-\frac{2}{n}} \\ &= \frac{1}{n} \left(\frac{1}{n} + \frac{2}{n} \right) e^{-2} - \frac{1}{2e^2} \cdot \frac{4}{n^2} - \frac{4}{ne^2} \cdot \left(-\frac{2}{n} \right) - \frac{1}{n} \left(\frac{1}{n} - 0 \right) e^0 \\ &= \frac{3}{n^2 e^2} - \frac{2}{n^2 e^2} + \frac{8}{n^2 e^2} - \frac{1}{n^2} \\ &= \frac{9 - e^2}{n^2 e^2} \end{split}$$

ここで, ℓ_n のx切片,y切片をそれぞれA,Bとすると

$$A\left(-\frac{4}{n}, 0\right)$$
, $B\left(0, -\frac{4}{ne^2}\right)$

よって,
$$\triangle OAB = \frac{1}{2} \cdot \left| -\frac{4}{n} \right| \cdot \left| -\frac{4}{ne^2} \right| = \frac{8}{n^2 e^2}$$

ゆえに,

$$S_{1} = \triangle OAB - S_{2}$$

$$= \frac{8}{n^{2}e^{2}} - \frac{9 - e^{2}}{n^{2}e^{2}}$$

$$= \frac{e^{2} - 1}{n^{2}e^{2}}$$

したがって,

$$\frac{S_1}{S_2} = \frac{\frac{e^2 - 1}{n^2 e^2}}{\frac{9 - e^2}{n^2 e^2}} = \frac{e^2 - 1}{9 - e^2} \cdots$$

となり, n によらない一定値であることが示された。

【総括】

 $C_n: y=xe^{nz}$ のグラフの概形は有名な形ですので,本問に限らず何かしら 題材とされますし, $\int xe^{nz}\,dx$ も基本的な積分計算ですから,面積なども絡 めた標準的なことが訊かれることになりやすいでしょう。

本問は $y=xe^{nx}$ のグラフに関する面白い性質をピックアップして問いにしてみたものです。