△OABにおいて,点Gを

$$\overrightarrow{OG} = k (\overrightarrow{OA} + \overrightarrow{OB})$$

である点とする。

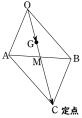
また,2点P,Qを $\overrightarrow{OP}=p\overrightarrow{OA}$, $\overrightarrow{OQ}=q\overrightarrow{OB}$ (0<p<1,0<q<1)である点とし, $\triangle OAB$ と $\triangle OPQ$ の面積をそれぞれS,S'とする。

- (1) 点 G が $\triangle OAB$ の内部にあるとき,k の満たすべき条件を求めよ。 ただし, $\triangle OAB$ の内部とは, $\triangle OAB$ で囲まれる部分からその周 を除いた部分をさす。
- (2) 3点G, P, Q が同一直線上にあるとき, $k \in p$, q を用いて表せ。
- (3) $k=\frac{1}{4}$ であって,3 点 G,P,Q が同一直線上にあるとき, $\frac{S'}{S}$ の 最小値を求めよ。

< '97 九州大 改 >

【戦略 1】

(1) k 倍する前の $\overrightarrow{\mathrm{OA}} + \overrightarrow{\mathrm{OB}}$ が表す点は定点なわけですから,イメージ としては



というように,定ベクトルの伸縮で G の位置が決まるイメージです。

riangleOAB **の内**部ということだと,線分 AB **の**中点 M に注目し $\overrightarrow{\mathrm{OG}} = \Box \ \overrightarrow{\mathrm{OM}}$

というように , \overrightarrow{OM} の伸縮と見て , 倍率の \square が $0<\square<1$ と見れば よいでしょう。

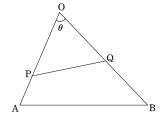
(2) 「点 G が線分 PQ 上にある」ということの翻訳は

$$\overrightarrow{\mathrm{OG}} = s \overrightarrow{\mathrm{OP}} + t \overrightarrow{\mathrm{OQ}}$$
 の形で表したとき , $s+t=1$ $\begin{pmatrix} 0 < s < 1 \\ 0 < t < 1 \end{pmatrix}$

です。(係数足して1ならば,先っちょ通る直線上)

(3) 角度を共有する三角形の面積比 $\dfrac{ riangle OPQ}{ riangle OAB}$ は

$$\frac{\triangle OPQ}{\triangle OAB} = \frac{\frac{1}{2}|\overrightarrow{OP}||\overrightarrow{OQ}|\sin\theta}{\frac{1}{2}|\overrightarrow{OA}||\overrightarrow{OB}|\sin\theta}$$
$$= \frac{p|\overrightarrow{OA}| \cdot q|\overrightarrow{OB}|}{|\overrightarrow{OA}||\overrightarrow{OB}|}$$



というようにシンプルに立式できます。

$$(2)$$
 で, $k = \frac{pq}{p+q}$ で, $k = \frac{1}{4}$ であることから,

$$p+q=4pq$$

という和と積の条件を得て、pqという積の最小値を考えるので相加平均・相乗平均をインスピレーションしたいところです。

【解1】

(1) 線分 AB の中点を M とする。

$$\overrightarrow{OM} = \frac{1}{2}\overrightarrow{OA} + \frac{1}{2}\overrightarrow{OB}$$
 \not \not \not \not \not \not \not \not o \not o

$$\overrightarrow{OG} = 2k \left(\frac{1}{2} \overrightarrow{OA} + \frac{1}{2} \overrightarrow{OB} \right)$$
$$= 2k \overrightarrow{OM}$$



と表せる。

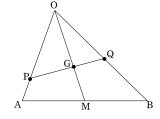
Gが \triangle OAB の内部にあるための条件は 0 < 2k < 1

すなわち $0 < k < \frac{1}{2}$ … 圏

(2)
$$\overrightarrow{OG} = k\overrightarrow{OA} + k\overrightarrow{OB}$$

$$= \frac{k}{p} (p \overrightarrow{OA}) + \frac{k}{q} (q \overrightarrow{OB})$$

$$= \frac{k}{p} \overrightarrow{OP} + \frac{k}{q} \overrightarrow{OQ}$$



点 Gが線分 PQ 上にあるため

$$\frac{k}{p} + \frac{k}{q} = 1$$
 (※ $\frac{k}{p} > 0$, $\frac{k}{q} > 0$ は満たしている)

これより,
$$k \cdot \frac{p+q}{pq} = 1$$
で, $k = \frac{pq}{p+q}$ … 圏

(3) $\angle AOB = \theta$ とおくと,

$$\frac{S'}{S} = \frac{\frac{1}{2}|\overrightarrow{OP}||\overrightarrow{OQ}|\sin\theta}{\frac{1}{2}|\overrightarrow{OA}||\overrightarrow{OB}|\sin\theta}$$
$$= \frac{p|\overrightarrow{OA}|\cdot q|\overrightarrow{OB}|}{|\overrightarrow{OA}||\overrightarrow{OB}|}$$
$$= pq$$

$$k=rac{1}{4}$$
 , 及び (2) の結果から $rac{pq}{p+q}=rac{1}{4}$, すなわち $p+q=4pq$ … ①

p>0, q>0 であるため、相加平均・相乗平均の関係から

$$p+q \ge 2\sqrt{pq}$$

であり、① より、 $4pq \ge 2\sqrt{pq}$ を得る。

両辺 $2\sqrt{pq}$ (>0) で割ると, $2\sqrt{pq}\ge 1$,すなわち $\sqrt{pq}\ge \frac{1}{2}$

両辺 2 乗すると , $pq \ge \frac{1}{4}$ を得る。

等号成立は p=q のときで、このとき ① より $p+p=4p^2$

$$p>0$$
 を考えると $p=\frac{1}{2}$ で,このとき $q=\frac{1}{2}$

以上から,
$$\frac{S'}{S}$$
 $(=pq)$ の最小値は $\frac{1}{4}$ … 圏

従属2変数関数の最小値問題ととらえ、文字消去し、微分法でゴリゴリ仕 留める路線が目についた人もいるでしょう。

【解 2】(3)部分的処理

(3) p+q=4pq , $\frac{S'}{S}=pq$ を得る部分は【解 1】と同じ

$$p=\frac{1}{4}$$
 とすると , $q+\frac{1}{4}=q$ となり不合理であるため , $p \Rightarrow \frac{1}{4}$

これより,
$$q=\frac{p}{4p-1}$$

また,
$$0 < q < 1$$
 であるため, $0 < \frac{p}{4p-1} < 1$

左の不等式,及びp>0から,4p-1>0,すなわち $p>\frac{1}{4}$

このとき,右の不等式からp < 4p-1,すなわち $p > \frac{1}{3}$

以上から
$$\frac{1}{3}$$

$$f(p) = 4p + \frac{1}{4p-1}$$
 とおくと

$$f'(p) = 4 - \frac{4}{(4p-1)^2}$$

$$= 4 \cdot \frac{(4p-1)^2 - 1}{(4p-1)^2}$$

$$= 4 \cdot \frac{8p(2p-1)}{(4p-1)^2}$$

 $\frac{1}{3} の範囲では$

	þ	$\left(\frac{1}{3}\right)$	•••	$\frac{1}{2}$		(1)
j	f '(p)		_	0	+	
	f(p)	$\left(\frac{13}{3}\right)$	×	3	1	$\left(\frac{13}{3}\right)$

$$p = \frac{1}{2}$$
 のとき, $\frac{S'}{S} = \frac{1}{16} \left\{ f\left(\frac{1}{2}\right) + 1 \right\} = \frac{1}{4}$

よって ,
$$\frac{S'}{S}$$
 は $p = \frac{1}{2}$ で最小値 $\frac{1}{4}$ をとる… 圏

【総括】

決して派手な問題ではありませんが、ベクトルの扱いにおける各種基本が 問われつつ、従属2変数の最小問題がオチという、実戦的な良問です。

【解2】の文字消去路線で行く場合,「文字が死んだら遺産の整理」という言葉を忘れず,生き残る p の範囲に注意しましょう。