xy 平面の第 1 象限内において,直線 ℓ : y=mx (m>0) と x 軸の両方に接している半径 a の円を C とし,円 C の中心を通る直線 y=tx (t>0) を考える。また,直線 ℓ とx 軸,および,円 C のすべてにそれぞれ 1 点で接する円の半径を b とする。ただし,b>a とする。

- (1) *m* を用いて *t* を表せ。
- (2) t を用いて $\frac{b}{a}$ を表せ。
- (3) 極限値 $\lim_{m\to +0} \frac{1}{m} \left(\frac{b}{a} 1\right)$ を求めよ。

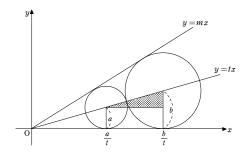
< '22 東北大 >

【戦略】

(1) y=tx は , ℓ と x 軸のなす角の二等分線です。

m, t の関係は,傾きの関係で,さらに二等分線という角度の関係を翻訳しようと思うと,tan を持ち出したくなります。

(2)



という状況です。

図の打点部分の直角三角形に注目すると

$$\left(\frac{b}{t} - \frac{a}{t}\right)^2 + (b - a)^2 = (b + a)^2$$

となります。

これを整理すれば, $\left(rac{1}{t^2}+1
ight)(b-a)^2\!=\!(b+a)^2$ となります。

最終的に $\dfrac{b}{a}$ を求めること,及びこの関係式が同次式であることを考えると,両辺 a^2 で割るのが自然です。

これにより,
$$\left(rac{1}{t^2}+1
ight)\left(rac{b}{a}-1
ight)^2=\left(rac{b}{a}+1
ight)^2$$
となります。

目に優しく, $c=\frac{b}{a}$ (>1) とおくと, $\left(\frac{1}{t^2}+1\right)(c-1)^2=(c+1)^2$ で,整理すれば c^2-2 $(2t^2+1)c+1=0$ という 2 次方程式を得ます。

 $c=(2t^2+1)\pm\sqrt{(2t^2+1)^2-1}$ という解を得ますが、どちらにしても c>0 ですから、c>0 というのは \pm を決定づける決め手になりません。

この 2次方程式の解 α , β に対して $\alpha\beta=1$ ですから, 大きいほうの解が 1 より大きく, 小さいほうの解は 1 より小さいことになります。

今回 c は c>1 を満たしていなければならないため、大きいほうの解ということになり、

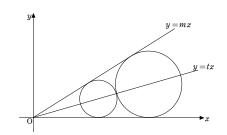
$$c = (2t^{2} + 1) + \sqrt{(2t^{2} + 1)^{2} - 1}$$
$$= (2t^{2} + 1) + 2t\sqrt{t^{2} + 1}$$

と解決します。

(3) (1) の途中経過から,m は t で表され,(2) から $\frac{b}{a}$ も t で表せています。

与えられた極限値はt に関する極限値として読み替えて処理すればよいでしょう。

【解答】



(1)
$$m = \tan \theta \left(0 < \theta < \frac{\pi}{2} \right)$$
 とおくと, $t = \tan \frac{\theta}{2}$

$$\tan \theta = \frac{2\tan \frac{\theta}{2}}{1 - \tan^2 \frac{\theta}{2}} \ \text{\sharp i) , } m = \frac{2t}{1 - t^2} \ \cdots \ \textcircled{1}$$

分母を払って整理すると, $mt^2 + 2t - m = 0$

$$t = \frac{-1 \pm \sqrt{1 + m^2}}{m}$$

$$t>0$$
 より , $t=\frac{\sqrt{m^2+1}-1}{m}$ … 圏

y = mx y = tx a b a b b a b c

図の打点部の直角三角形に注目すると

$$\left(\frac{b}{t} - \frac{a}{t}\right)^2 + (b - a)^2 = (b + a)^2$$

$$\left\{\frac{1}{t}(b-a)\right\}^2 + (b-a)^2 = (b+a)^2$$

$$\left(\frac{1}{t^2}+1\right)(b-a)^2=(b+a)^2$$

両辺
$$a^2$$
 ($>$ 0) で割ると, $\left(\frac{1}{t^2}+1\right)\left(\frac{b}{a}-1\right)^2=\left(\frac{b}{a}+1\right)^2$

$$\frac{b}{a} = c$$
 とおくと, $\left(\frac{1}{t^2} + 1\right)(c-1)^2 = (c+1)^2$

分母を払って整理すると, $c^2-2(2t^2+1)c+1=0$ …(*)

この 2 次方程式の 2 解 α , β に対して, $\alpha\beta=1$ であるため (*) を満たす解は一方が 1 より大きく, 他方は 1 より小さい。

$$c\left(=rac{b}{a}
ight)>$$
1 であるため, $c=(2t^2+1)+\sqrt{(2t^2+1)^2-1}$

ゆえに,

$$\frac{b}{a} = (2t^2 + 1) + \sqrt{(2t^2 + 1)^2 - 1}$$
$$= (2t^2 + 1) + 2t\sqrt{t^2 + 1} \cdots$$

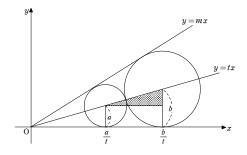
(3) $m \rightarrow +0$ のとき, $t \rightarrow +0$

① より ,
$$\frac{1}{m} = \frac{1-t^2}{2t}$$
 であり , (2) の結果もあわせると

(与式) =
$$\lim_{t \to +0} \left(\frac{1-t^2}{2t} \right) \left(2t^2 + 2t\sqrt{t^2 + 1} \right)$$

= $\lim_{t \to +0} \left(1 - t^2 \right) \left(t + \sqrt{t^2 + 1} \right)$
= $1 \cdot (0 + \sqrt{1})$
= $1 \cdots$ 晉

【戦略 2】(2) 部分的処理



【戦略1】では

傾きが t であることに注目し, $\frac{a}{t}$, $\frac{b}{t}$ を導出 ightarrow 三平方の定理という流れで処理しましたが ,

三平方の定理 ightarrow 傾きが t であることに注目 という逆の流れで考えることもできます。

【解 2】(2)部分的処理



図のように P, Q, R を定めると, 三平方の定理から

$$PQ = \sqrt{(b+a)^2 - (b-a)^2} = 2\sqrt{ab}$$

$$t=rac{\mathrm{QR}}{\mathrm{PQ}}$$
 より, $t=rac{b-a}{2\sqrt{ab}}=rac{rac{b}{a}-1}{2\sqrt{rac{b}{a}}}=rac{c-1}{2\sqrt{c}}$ $\left(c=rac{b}{a}$ とおいた $ight)$

$$t^2 = \frac{(c-1)^2}{4c}$$
 で,分母を払って整理すると,

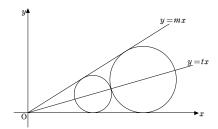
$$c^2 - 2(2t^2 + 1)c + 1 = 0$$

(以下【解1】に準じる)

※
$$t=\frac{b-a}{2\sqrt{ab}}=\frac{1}{2}\left(\sqrt{\frac{b}{a}}-\sqrt{\frac{a}{b}}\right)=\frac{1}{2}\left(\sqrt{c}-\frac{1}{\sqrt{c}}\right)$$
 とすると,
$$c-2t\sqrt{c}-1=0$$
 という関係を得る。
$$\sqrt{c}=t\pm\sqrt{t^2+1} \ \ \text{だが },\ \sqrt{c}>0 \ \ \text{であるため },\ \sqrt{c}=t+\sqrt{t^2+1}$$

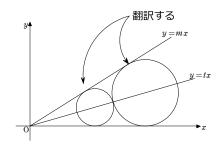
 $c = (t + \sqrt{t^2 + 1})^2$ であり, $c = 2t^2 + 1 + 2t\sqrt{t^2 + 1}$ と処理してもよい。

【総括】



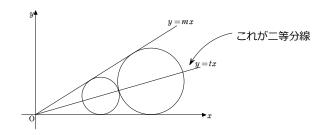
という状態の翻訳するのに

ここで接するということを



という方針でいこうと思うと、中心の座標を設定する必要があります。

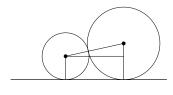
一方【解答】では



と翻訳しました。(この場合も θ という文字の設定が必要)

このように本問は随所で複数方針が考えられ、目移りしてしまいそうです。

また,形的にきれいな形ではないため,試験場では不安になるかもしれま せん。



という構図は定番の構図で 中心間距離と水平距離に注目し 三平方の定理を使うのが定番です。

また,(2) の導出過程で現れる「同次式」の扱いについては経験値が必要な部分がありますが,東北大受験生であればクリアーすべき基本事項です。 今回はもろに $\frac{b}{a}$ が訊かれていることも考えると,なおさらクリアーしたいところです。