$\alpha = \frac{2\pi}{7}$ とする。以下の問いに答えよ。

- (1) $\cos 4\alpha = \cos 3\alpha$ であることを示せ。
- (2) $f(x)=8x^3+4x^2-4x-1$ とするとき, $f(\cos\alpha)=0$ が成り立つことを示せ。
- (3) cosα は無理数であることを示せ。

< '22 大阪大 >

【戦略】

- (1) $7\alpha = 2\pi$ なので、 $4\alpha + 3\alpha = 2\pi$ と見ます。
- (2) $\cos 4\alpha$, $\cos 3\alpha$ を $\cos \alpha$ で表すことを考えていきます。

 $\cos 3\alpha$ については 3 倍角の公式 $\cos 3\alpha = 4\cos^3\alpha - 3\cos\alpha$ として一発で捌きます。

 $\cos 4\alpha$ についてはひとまず, $\cos 4\alpha = 2\cos^2 2\alpha - 1$ と 2 倍角の公式を一発かまし,さらに, $\cos 2\alpha = 2\cos^2 \alpha - 1$ ともう一発かませばよいでしょう。

これにより, $8\cos^4\alpha - 8\cos^2\alpha + 1 = 4\cos^3\alpha - 3\cos\alpha$,すなわち $8\cos^4\alpha - 4\cos^3\alpha - 8\cos^2\alpha + 3\cos\alpha + 1 = 0$ を得ますが,

 $(\cos\alpha-1)(8\cos^3\alpha+4\cos^2\alpha-4\cos\alpha-1)=0$ と因数分解できますので, $\cos\alpha = 1$ であることを考えれば証明完了です。

(3) もちろん背理法です。

 $\cos \alpha$ は正なので, $\cos \alpha = \frac{q}{p} \left(p , \ q \ \text{は互いに素な正の整数} \right)$ とおけ

(2) から $\cos \alpha$ が $8x^3 + 4x^2 - 4x - 1 = 0$ という 3 次方程式の有理数解であることが分かっていますから、

$$\frac{8q^3}{p^3} + \frac{4q^2}{p^2} - \frac{4q}{p} - 1 = 0$$
 が成り立ちます。

経験的,知識的側面がモノを言いますが,もし,この3次方程式が 有理数解をもつのだとすれば

> 1 の約数 8 の約数

という形に限られます。

つまり, q=1, p=1, 2, 4, 8 という可能性しかなくなります。

あとは、個別検証で全て不適であることが言えれば解決です。

なお、上記の有名事実については、

整数 = 分数 の形を狙って分母を睨む というこれまた有名な態度で導出します。

【解答】

これより,
$$\cos 4lpha=\cos(-3lpha+2\pi)$$

 $=\cos(-3lpha)$
 $=\cos 3lpha$ (∵ 一般に $\cos(- heta)=\cos heta$)

ゆえに,題意は示された。

(2) $\cos 4\alpha = 2\cos^2 2\alpha - 1$ = $2\{2\cos^2 \alpha - 1\}^2 - 1$ = $2(4\cos^4 \alpha - 4\cos^2 \alpha + 1) - 1$ = $8\cos^4 \alpha - 8\cos^2 \alpha + 1$

 $\cos 3\alpha = 4\cos^3\alpha - 3\cos\alpha$

(1) $\sharp i$ $8 \cos^4 \alpha - 8 \cos^2 \alpha + 1 = 4 \cos^3 \alpha - 3 \cos \alpha$

すなわち, $8\cos^4\alpha - 4\cos^3\alpha - 8\cos^2\alpha + 3\cos\alpha + 1 = 0$

これより, $(\cos\alpha - 1)(8\cos^3\alpha + 4\cos^2\alpha - 4\cos\alpha - 1) = 0$

$$\alpha = \frac{2\pi}{7}$$
 より, $\cos \alpha \ne 1$ であるから,
$$8\cos^3 \alpha + 4\cos^2 \alpha - 4\cos \alpha - 1 = 0$$

ゆえに, $f(x)=8x^3+4x^2-4x-1$ に対して, $f(\cos\alpha)=0$ である。

(3) cos α が有理数だと仮定する。

 $\cos \alpha > 0$ であることに注意すると,

$$\cos \alpha = \frac{q}{p} (p, q は互いに素な正の整数)$$

とおける。

(2)
$$\sharp i$$
), $\frac{8q^3}{p^3} + \frac{4q^2}{p^2} - \frac{4q}{p} - 1 = 0$

両辺 p^3 をかけると, $8q^3+4pq^2-4p^2q-p^3=0$

これより,
$$q(8q^2+4pq-4p^2)=p^3$$
 整数=分数

すなわち, $8q^2+4pq-4p^2=rac{p^3}{q}$ であり,左辺は整数なので右辺も整数

p, q は互いに素であるため, q=1

このとき、 $8+4p-4p^2-p^3=0$

$$-p^3 = 4p^2 - 4p - 8$$

$$= 4(p^2 - p - 2)$$

$$= 4(p - 2)(p + 1) \cdots (*)$$
整数= 分数
$$-方, p(p^2 + 4p - 4) = 8 なので, p^2 + 4p - 4 = \frac{8}{p}$$

 $\frac{8}{b}$ が整数ゆえ,p=1,2,4,8 だが,どれも (*) を満たさず不合理。

以上から,仮定は誤りで, $\cos \alpha$ は無理数である。

 $2\cos\alpha$ が無理数であることを示してもよいでしょう。

そうすると,扱う3次方程式は 最高次の係数が1の方程式(モニック方程式)

となり、若干楽になります。

【解2】(3) について

(2) $\sharp i$ 8 $\cos^3 \alpha + 4 \cos^2 \alpha - 4 \cos \alpha - 1 = 0$

すなわち , $(2\cos\alpha)^3+(2\cos\alpha)^2-2\cdot(2\cos\alpha)-1=0$ であるため

 $x^3 + x^2 - 2x - 1 = 0$ は, $x = 2\cos\alpha$ を解にもつ。

2 cosα が有理数だと仮定すると

$$2\cos\alpha = \frac{\ell}{k} (k, \ell は互いに素な正の整数)$$

とおける。

ゆえに,
$$\frac{\ell^3}{k^3} + \frac{\ell^2}{k^2} - \frac{2\ell}{k} - 1 = 0$$

両辺 k^2 をかけると, $\frac{\ell^3}{k}$ + ℓ^2 - $2k\ell$ - k^2 = 0

すなわち,
$$\frac{\ell^3}{k}$$
 = $-\ell^2+2k\ell+k^2$

ゆえに , $\frac{\ell^3}{k}$ は整数であり , k , ℓ は互いに素であるため , k=1

ゆえに, $2\cos\alpha = \ell$ となり, $2\cos\alpha$ は整数。…(☆)

しかし,
$$\alpha = \frac{2\pi}{7}$$
 ゆえ, $0 < \alpha < \frac{\pi}{3}$ で, $\cos \frac{\pi}{3} < \cos \alpha < \cos 0$

すなわち, $\frac{1}{2}$ < $\cos \alpha$ <1 であり,1< $2\cos \alpha$ <2 であり,(\diamondsuit) に矛盾する

以上から, $2\cos\alpha$ は無理数である。

 $\cos \alpha$ が有理数と仮定すると, $2\cos \alpha$ も有理数であるため直ちに矛盾する。

したがって, $\cos \alpha$ も無理数である。

【総括】

 $\cos n\theta$ が $\cos \theta$ の n 次式で表せるという有名ネタ (チェビシェフの多項式) をベースとした典型問題です。

大阪大受験生であれば、この類の問題は経験しているはずです。

ただ、このあたりの話題を体系的に整理できておらず、

「そういえば似たような類題やったことあったかも」 程度の理解度だとファンブルもあり得ます。