複素数平面上に、原点 O を頂点の1つとする正六角形 OABCDE が与えられている。ただしその頂点は時計の針の進む方向と逆向きに O, A, B, C, D, E とする。互いに異なる 0でない複素数 α , β , γ が

 $0 \le \arg\left(\frac{\beta}{\alpha}\right) \le \pi$, $4\alpha^2 - 2\alpha\beta + \beta^2 = 0$, $2\gamma^2 - (3\alpha + \beta + 2)\gamma + (\alpha + 1)(\alpha + \beta) = 0$ を満たし, α , β , γ のそれぞれが正六角形 OABCDE の頂点のいずれかであるとする。

- (1) $\frac{\beta}{\alpha}$ を求め、 α 、 β がそれぞれどの頂点か答えよ。
- (2) $組(\alpha, \beta, \gamma)$ をすべて求め、それぞれの組について正六角形 OABCDE を 複素数平面上に図示せよ。

< '22 名古屋大 >