自然数n に対して次のようにおく。

$$a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \log n$$
, $b_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \log(n+1)$

(1) $n \ge 2$ のとき, $a_n < a_{n-1}$, $b_n > b_{n-1}$ を示せ。

不等式 1.09 < log 3 < 1,1 を用いて,(2),(3) に答えよ。

- (2) $n \ge 2$ のとき, $b_n > 0.4$ を示せ。
- (3) $n \ge 3$ のとき, $0.4 < a_n < 0.75$ を示せ。

< '10 大阪医科大 >

【戦略】

(1) n=1, 2, \cdots に対して $a_{n+1} < a_n$, $b_{n+1} > b_n$ であることを示しても同じことです。

$$a_n - a_{n+1}$$
 を計算すると, $\log(n+1) - \log n - \frac{1}{n+1}$ となります。

これが正であるということを示したいので,微分の力を借りるために $f(x)\!=\!\log(x+1)-\log x-\frac{1}{x+1}\,(x\!>\!0)$ とおき,微分します。

$$f'(x)\!=\!\cdots\cdots=\!-rac{1}{x(x+1)^2}\!<\!0$$
 となり、単調減少です。

遥か彼方の $\lim f(x)$ については

$$\lim_{x\to\infty} f(x) = \lim_{x\to\infty} \left\{ \log\left(1 + \frac{1}{x}\right) - \frac{1}{x+1} \right\} = 0$$

なので、減少しても0を下回ることはないと言え、f(x)>0です。

 $b_{n+1}-b_n>0$ についての証明も同じです。

- (2) (1) より、数列 $\{b_n\}$ は単調増加であることが分かります。
 - つまり、一番小さい b_2 でも 0.4 を上回っていると言えれば OK です。

これについては与えられた log3 の評価を単純利用すれば大丈夫です。

(3) $a_n < 0.75$ を示すには, $n \ge 3$ の範囲内で, a_3 が最大ですから, $a_3 < 0.75$ と言えればいいわけです。

これについては(2) 同様に $\log 3$ の評価を利用すればOKです。

 $\frac{11}{15} < a_3 < \frac{223}{300}$ となりますが, $\frac{223}{300} < \frac{75}{100}$ なので, $a_3 < 0.75$ がいえます

問題は $a_n > 0.4$ をどのように言うかです。

 a_n を小さくしよう小さくしようと思っても、数列 $\{a\}$ は単調減少です。

そこで,(2) の誘導を用いる方向性で $,a_n>b_n$ を示しにいきます。

 $a_n > b_n$ が示せたら, $b_n > 0.4$ なので, $a_n > 0.4$ も言えるわけです。

【解答】

(1) $n \ge 1$ のときに, $a_{n+1} < a_n$, $b_{n+1} > b_n$ を示せばよい。

$$a_n - a_{n+1} = \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \log n\right) - \left\{1 + \frac{1}{2} + \dots + \frac{1}{n+1} - \log(n+1)\right\}$$
$$= \log(n+1) - \log n - \frac{1}{n+1}$$

$$f(x) = \log(x+1) - \log x - \frac{1}{x+1} (x > 0)$$
 とおく。

$$\begin{split} f'(x) &= \frac{1}{x+1} - \frac{1}{x} + \frac{1}{(x+1)^2} \\ &= \frac{x(x+1) - (x+1)^2 + x}{x(x+1)^2} \\ &= -\frac{1}{x(x+1)^2} < 0 \end{split}$$

x>0 の範囲で f(x) は単調減少。

ゆえに, f(x)>0 であるため, $n=1, 2, \cdots$ に対して f(n)>0

これより n=1, 2, … に対して $a_n-a_{n+1}>0$, すなわち $a_{n+1}< a_n$

次に

$$\begin{split} b_{n+1} - b_n &= \left\{ 1 + \frac{1}{2} + \dots + \frac{1}{n+1} - \log(n+2) \right\} - \left(1 + \frac{1}{2} + \dots + \frac{1}{n} - \log(n+1) \right) \\ &= \frac{1}{n+1} + \log(n+1) - \log(n+2) \end{split}$$

$$g(x) = \frac{1}{x+1} + \log(x+1) - \log(x+2) \ (x > -1)$$
 とおくと

$$\begin{split} g^{\,\prime}(x) &= -\frac{1}{(x+1)^2} + \frac{1}{x+1} - \frac{1}{x+2} \\ &= \frac{-(x+2) + (x+1)(x+2) - (x+1)^2}{(x+1)^2(x+2)} \\ &= -\frac{1}{(x+1)^2(x+2)} < 0 \end{split}$$

g(x) は x > -1 の範囲で単調減少

$$\begin{split} &\lim_{x \to \infty} g(x) = \lim_{x \to \infty} \left\{ \frac{1}{x+1} + \log \frac{x+1}{x+2} \right\} \\ &= \lim_{x \to \infty} \left\{ \frac{1}{x+1} + \log \frac{1 + \frac{1}{x}}{1 + \frac{2}{x}} \right\} \end{split}$$

ゆえに,x>-1で g(x)>0 であるため,n=1,2, … に対して g(n)>0

これより, n=1, 2, … に対して $b_{n+1}-b_n>0$, すなわち $b_{n+1}>b_n$

以上から題意は示された。

(2)
$$b_2 = 1 + \frac{1}{2} - \log 3$$

= $\frac{3}{2} - \log 3$

$$1.09 < \log 3 < 1.1 \quad \sharp \ \emptyset \ , \ \frac{3}{2} - 1.1 < \frac{3}{2} - \log 3 < \frac{3}{2} - 1.09$$

すなわち 0.4 < b2 < 0.41

$$(1)$$
 より, $b_n \ge b_2$ $(n \ge 2)$ であり, $b_n > 0.4$

(3)
$$a_3 = 1 + \frac{1}{2} + \frac{1}{3} - \log 3$$

= $\frac{11}{6} - \log 3$

$$1.09 < \log 3 < 1.1 \quad \sharp \ ^{i}) \ \ \frac{11}{6} - 1.1 < \frac{11}{6} - \log 3 < \frac{11}{6} - 1.09$$

すなわち,
$$\frac{11}{15}$$
 $<$ a_3 $<$ $\frac{223}{300}$ $\left($ $<$ $\frac{75}{100}$ $\right)$

 $n \ge 3$ に対して, $a_n \le a_3 < 0.75$ で, $a_n < 0.75$

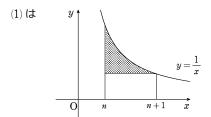
一方,
$$a_n - b_n = \log(n+1) - \log n$$

$$= \log\left(1 + \frac{1}{n}\right)$$
> 0

ゆえに, $a_n > b_n > 0.4$

以上から, $0.4 < a_n < 0.75$ である。

【総括】



という打点部の面積が

$$\int_{n}^{n+1} \frac{1}{x} dx - \frac{1}{n+1} = \left[\log x \right]_{n}^{n+1} - \frac{1}{n+1}$$
$$= \log(n+1) - \log n - \frac{1}{n+1}$$
$$= a_{n} - a_{n+1}$$

なので, $a_n - a_{n+1} > 0$ と視覚的に言うこともできます。

なお,本問の結果から,数列 $\{a_n\}$ は下に有界な単調減少数列であるため 収束します。

この極限値は γ (オイラーの定数) と呼ばれます。

つまり,
$$\lim_{n\to\infty} \left(1+\frac{1}{2}+\cdots+\frac{1}{n}-\log n\right) = \gamma$$
 ということです。

このオイラーの定数 γ は $\gamma = 0.577215$ … となります。

ただ、このオイラーの定数 γ は無理数なのか有理数なのかも未だに分かっていません。(恐らく無理数であるだろうと予想されています。)

オイラーの定数 γ は n が十分に大きいときの

調和級数と、対数関数の差

ということを意味しています。

 $\lim b_n$ も本質的には同じで

$$\begin{split} &\lim_{n \to \infty} b_n = \lim_{n \to \infty} \left\{ 1 + \frac{1}{2} + \dots + \frac{1}{n} - \log(n+1) \right\} \\ &= \lim_{n \to \infty} \left\{ 1 + \frac{1}{2} + \dots + \frac{1}{n} - \log n + \log n - \log(n+1) \right\} \\ &= \lim_{n \to \infty} \left\{ 1 + \frac{1}{2} + \dots + \frac{1}{n} - \log n + \log \frac{n}{n+1} \right\} \\ &= \lim_{n \to \infty} \left\{ 1 + \frac{1}{2} + \dots + \frac{1}{n} - \log n + \log \frac{1}{1 + \frac{1}{n}} \right\} \\ &= r \end{split}$$

となります。