(1) $\vec{0}$ でない平面ベクトル \vec{a} , \vec{b} , \vec{c} が

$$\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} + \frac{\vec{c}}{|\vec{c}|} = \vec{0}$$

を満たすとき,3つのベクトルの互いになす角をそれぞれ求めよ。

(2) $\vec{a} \Rightarrow \vec{0}$, \vec{x} を任意の平面ベクトルとするとき

$$|\vec{a} - \vec{x}| \ge |\vec{a}| - \vec{x} \cdot \frac{\vec{a}}{|\vec{a}|}$$

であることを示せ。ここで, $\vec{x}\cdot\frac{\vec{a}}{|\vec{a}|}$ は, \vec{x} と $\frac{\vec{a}}{|\vec{a}|}$ の内積を表す。

(3) すべての内角が 120° 未満の三角形 ABC の内部の点 X から各頂点 までの距離の和 $|\overrightarrow{XA}| + |\overrightarrow{XB}| + |\overrightarrow{XC}|$ が最小になるような X を求め よ。

< '00 東北大 >

【戦略】

(1) $\stackrel{
ightarrow}{a}$ と $\frac{\stackrel{
ightarrow}{a}}{|\stackrel{
ightarrow}{a}|}$ は大きさが違うだけで ,方向自体は同じなので

単位ベクトル $\dfrac{ec{a}}{|ec{a}|}\,,\,\dfrac{ec{b}}{|ec{b}|}\,,\,\dfrac{ec{c}}{|ec{c}|}$ のなす角を考えればよいでしょう。

ひとまず
$$\frac{\vec{a}}{|\vec{a}|}$$
= $\vec{e_{\mathrm{A}}}$, $\frac{\vec{b}}{|\vec{b}|}$ = $\vec{e_{\mathrm{B}}}$, $\frac{\vec{c}}{|\vec{c}|}$ = $\vec{e_{\mathrm{C}}}$ などとおいて

 $\overrightarrow{e_{\rm A}} + \overrightarrow{e_{\rm B}} + \overrightarrow{e_{\rm C}} = \overrightarrow{0}$ と目に優しくしておきます。

ベクトルの情報から角度を得るには当然内積を経由するわけで

$$|\overrightarrow{e}_{A} + \overrightarrow{e}_{B}|^{2} = |\overrightarrow{e}_{C}|^{2}$$

などと移項して 2 乗を計算することで内積を登場させるのが 常套手段です。

(2) 結局は $|\vec{a} - \vec{x}|^2 \ge \left| |\vec{a}| - \vec{x} \cdot \frac{\vec{a}}{|\vec{a}|} \right|^2$ が言えればよいでしょう。

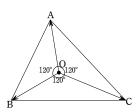
証明自体は素直に差を取って計算すれば問題ありません。

- (3) (1),(2)の結果をうまいこと利用することを考えます。
 - (1) が場所のヒント、(2) が最小となることの裏付け用

と考えれば、

右の図となるような点 () が考えられます。

この \bigcirc が今回求めるXということを予想し,それを裏付けます。



任意の点 X に対して

 $|\overrightarrow{XA}|+|\overrightarrow{XB}|+|\overrightarrow{XC}|\geq |\overrightarrow{OA}|+|\overrightarrow{OB}|+|\overrightarrow{OC}|$ であることを示しにいけばよく,これを位置ベクトルで読み替えると,(2) の活用法が見えてくるでしょう。

【解答】

(1)
$$\frac{\vec{a}}{|\vec{a}|} = \vec{e}_A$$
, $\frac{\vec{b}}{|\vec{b}|} = \vec{e}_B$, $\frac{\vec{c}}{|\vec{c}|} = \vec{e}_C$ $\succeq \vec{b} < 0$

条件より,
$$\overrightarrow{e_A} + \overrightarrow{e_B} + \overrightarrow{e_C} = \overrightarrow{0}$$
 … ①

$$\sharp \, \mathcal{E}, \, |\overrightarrow{e_A}| = |\overrightarrow{e_B}| = |\overrightarrow{e_C}| = 1 \cdots 2$$

さて、①より、
$$|\overrightarrow{e}_A + \overrightarrow{e}_B|^2 = |\overrightarrow{e}_C|^2$$

② に注意すると, $1^2 + 2\overrightarrow{e_A} \cdot \overrightarrow{e_B} + 1^2 = 1^2$

これより
$$\overrightarrow{e_{\mathrm{A}}} \cdot \overrightarrow{e_{\mathrm{B}}} = -\frac{1}{2}$$
で, $\overrightarrow{e_{\mathrm{A}}}$, $\overrightarrow{e_{\mathrm{B}}}$ のなす角を θ_1 とすると
$$|\overrightarrow{e_{\mathrm{A}}}| \cdot |\overrightarrow{e_{\mathrm{B}}}| \cdot \cos\theta_1 = -\frac{1}{2}$$
で,②より $\cos\theta_1 = -\frac{1}{2}$

ゆえに, $\overrightarrow{e_{\mathrm{A}}}$, $\overrightarrow{e_{\mathrm{B}}}$ のなす角は 120° であり, \overrightarrow{a} , \overrightarrow{b} のなす角も 120°

同様に,①,②のもつ式の対称性から

 $\overrightarrow{e_{\mathrm{B}}}$, $\overrightarrow{e_{\mathrm{C}}}$ のなす角, $\overrightarrow{e_{\mathrm{C}}}$, $\overrightarrow{e_{\mathrm{A}}}$ のなす角も 120°

であり $,ec{b},ec{c}$ のなす角 $,ec{c},ec{a}$ のなす角も $\,120^\circ$

 \vec{a} , \vec{b} , \vec{c} の互いになす角は 120° … 圏

(2)
$$|\vec{a} - \vec{x}|^2 - |\vec{a}| - \vec{x} \cdot \frac{\vec{a}}{|\vec{a}|}|^2$$

$$= |\vec{a}|^2 - 2\vec{a} \cdot \vec{x} + |\vec{x}|^2 - |\vec{a}|^2 + 2|\vec{a}| \left(\vec{x} \cdot \frac{\vec{a}}{|\vec{a}|}\right) - \left(\vec{x} \cdot \frac{\vec{a}}{|\vec{a}|}\right)^2$$

$$= -2\vec{a} \cdot \vec{x} + |\vec{x}|^2 + 2\vec{a} \cdot \vec{x} - \frac{(\vec{a} \cdot \vec{x})^2}{|\vec{a}|^2}$$

$$=\frac{|\vec{a}|^2|\vec{x}|^2-(\vec{a}\cdot\vec{x})^2}{|\vec{a}|^2}$$

$$=rac{|ec{a}|^2 |ec{x}|^2 - |ec{a}|^2 |ec{x}|^2 - |ec{a}|^2 |ec{x}|^2 \cos^2 heta}{|ec{a}|^2}$$
 $(ec{a},ec{x})$ のなす角を $heta$ とおいた)

$$= \frac{|\vec{a}|^2 |\vec{x}|^2 (1 - \cos^2 \theta)}{|\vec{a}|^2}$$

 ≥ 0

よって
$$|\vec{a} - \vec{x}|^2 \ge \left| |\vec{a}| - \vec{x} \cdot \frac{\vec{a}}{|\vec{a}|} \right|^2$$

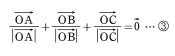
ゆえに,
$$|\vec{a}-\vec{x}| \ge \left| |\vec{a}| - \vec{x} \cdot \frac{\vec{a}}{|\vec{a}|} \right| \ge |\vec{a}| - \vec{x} \cdot \frac{\vec{a}}{|\vec{a}|}$$
 が成立する。

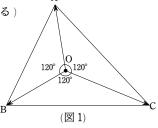
以上から $|\vec{a} - \vec{x}| \ge |\vec{a}| - \vec{x} \cdot \frac{\vec{a}}{|\vec{a}|}$ が成り立つことが示された。

(等号成立は $\theta = 0$, π , すなわち $\stackrel{\rightarrow}{a}$ と $\stackrel{\rightarrow}{x}$ が平行なとき)

(3) (図1)のように点Oをとる。(このOがとれることは後に証明する)

このとき(1)を考えると





この O を位置ベクトルの基準として

$$A(\vec{a}), B(\vec{b}), C(\vec{c}), X(\vec{x})$$

とすると,(2)より任意の点 X に対して

$$|\overrightarrow{OA} - \overrightarrow{OX}| \ge |\overrightarrow{OA}| - \overrightarrow{OX} \cdot \frac{\overrightarrow{OA}}{|\overrightarrow{OA}|}$$
 , tabs

$$|\overrightarrow{XA}| \ge |\overrightarrow{OA}| - \overrightarrow{OX} \cdot \frac{\overrightarrow{OA}}{|\overrightarrow{OA}|} \cdots \textcircled{4}$$

同様に

$$|\overrightarrow{XB}| \ge |\overrightarrow{OB}| - \overrightarrow{OX} \cdot \frac{\overrightarrow{OB}}{|\overrightarrow{OB}|} \cdots$$

$$|\overrightarrow{XC}| \ge |\overrightarrow{OC}| - \overrightarrow{OX} \cdot \frac{\overrightarrow{OC}}{|\overrightarrow{OC}|} \cdots \textcircled{6}$$

4+5+6より

$$|\overrightarrow{XA}| + |\overrightarrow{XB}| + |\overrightarrow{XC}| \ge |\overrightarrow{OA}| + |\overrightarrow{OB}| + |\overrightarrow{OC}| - \overrightarrow{OX} \cdot \left(\frac{\overrightarrow{OA}}{|\overrightarrow{OA}|} + \frac{\overrightarrow{OB}}{|\overrightarrow{OB}|} + \frac{\overrightarrow{OC}}{|\overrightarrow{OC}|}\right)$$

等号成立は $\vec{a}/\!\!/\vec{x}$, $\vec{b}/\!\!/\vec{x}$, $\vec{c}/\!\!/\vec{x}$ すなわち

$$\overrightarrow{OA}/\!\!/\overrightarrow{OX}$$
, $\overrightarrow{OB}/\!\!/\overrightarrow{OX}$, $\overrightarrow{OC}/\!\!/\overrightarrow{OX}$

のとき。

このとき, X と O は一致する。

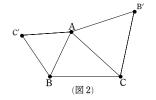
つまり, X は

$$\angle AXB = \angle BXC = \angle CXA = 120^{\circ}$$

を満たすようにとればよい。… 圏

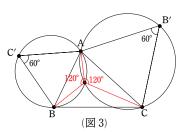
【(図1)のように O がとれることの証明】

(図 2) のように 正三角形 AB'C, ABC' を 考える。



この正三角形 AB'C, ABC'の 外接円の交点は $\triangle ABC$ の内部にある。 ($\triangle ABC$ の内角はすべて 120° 未満 なので)

正三角形 AB'C, ABC'の 外接円の交点を O とすれば \angle AOB= \angle BOC= \angle COA=120° となる。((図 3)参照)



【総括】

本問で得られる X は三角形 ABC のフェルマー点と言います。

3 頂点からの距離の和が最小となるという重要な結果を含むテーマであり、 経験があったり、結論を知っていると今回の誘導の使い方も見えやすいも のがあったかと思います。

なお,120°以上の鈍角を含む三角形 ABC については,その鈍角を見込む 頂点がフェルマー点となります。