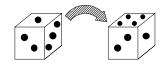
さいころが机の上に1の面を 上にして置かれている。

底面の目は6で,側面の目は2,3,4,5 である。

このさいころを, 机に接する 4 本 の辺(稜)のいずれかを回転軸として



1回だけ横に倒す操作を"1回転がす"ということにする。

最初の状態から1回転がした結果,上面は2,3,4,5 のどれかになる。いま,どの辺を軸として転がすかは無作為(等確率)であるとし,最初の状態からn回転がしたとき

- 1の面が上面に来る確率を a_n
- 1の面が側面に来る確率を b,
- 1の面が底面に来る確率を c_n

とする。

- (1) a_n , b_n , c_n を a_{n-1} , b_{n-1} , c_{n-1} で表せ。
- (2) a_n , 及び $\lim_{n\to\infty}a_n$ を求めよ。

< '07 お茶の水女子大 改 >

【戦略】

(1) n-1 回目の状態とn 回目の状態を丁寧に追っていき、状態推移を捉えていきます。

上面や底面に1があると,次の回は確実に1は側面にいきます。

$$(2)$$
 (1) で立てた $\left\{ egin{align*} a_n = rac{1}{4}b_{n-1} \ b_n = a_{n-1} + rac{1}{2}b_{n-1} + c_{n-1} \ c_n = rac{1}{4}b_{n-1} \end{array}
ight.$

という連立漸化式を解いていきます。

連立漸化式の基本は文字消去ですから、文字消去を狙っていきます。

確率漸化式特有の条件式 $a_n + b_n + c_n = 1$ であることを活用したいと 思えれば

$$b_n = a_{n-1} + \frac{1}{2}b_{n-1} + c_{n-1}$$
 及び, $a_{n-1} + b_{n-1} + c_{n-1} = 1$ に注目して

$$b_{\,{\scriptscriptstyle n}}\!=\!(1\!-\!b_{\,{\scriptscriptstyle n}-1})\!+\!rac{1}{2}b_{\,{\scriptscriptstyle n}-1}$$
, すなわち $b_{\,{\scriptscriptstyle n}}\!=-rac{1}{2}b_{\,{\scriptscriptstyle n}-1}\!+\!1$ を得て,

基本的な2項間漸化式に落ち着きます。

これを解いて, b_n を出し,番号を下げて b_{n-1} を出し, $a_n = \frac{1}{4} b_{n-1}$ にぶち込んでもいいのですが,最終的に求めるものが a_n であることを 考え

$$b_{\,n-1}\!=\!4\,a_{\,n}$$
 とし, $4\,a_{\,n+1}\!=\!-rac{1}{2}\cdot\!4\,a_{\,n}\!+\!1$ とする

という路線で処理します。

【解答】

(1) 最初の状態を 0 回目の操作後とみなし, a_0 =1, b_0 =0, c_0 =0 と解釈 すれば,n=0,1,2,… に対して $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ を考えることが できる

n=0, 1, 2, … に対して, n 回転がしたとき

1の面が上面に来る状態を A.,

1の面が側面に来る状態を B,

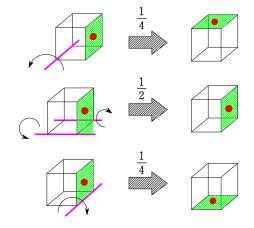
1の面が底面に来る状態を C_{m}

とする。

 $n=1, 2, 3, \cdots$ に対して

状態 A_{n-1} からは、どの辺を選んでも状態 B_n となる。

状態 B_{n-1} からは $\left\{egin{array}{l} \displaystyle ext{ 確率} \, rac{1}{4} \, ext{ で状態} \, A_n \ \\ \displaystyle ext{ 確率} \, rac{1}{2} \, ext{ で状態} \, B_n \, \, \, ext{ となる}. \ \\ \displaystyle ext{ 確率} \, rac{1}{4} \, \, ext{ で状態} \, C_n \end{array}
ight.$



状態 C_{n-1} からは、どの辺を選んでも状態 B_n となる。

以上から,
$$\left\{ \begin{array}{l} a_n=\frac{1}{4}b_{n-1} \\ b_n=a_{n-1}+\frac{1}{2}b_{n-1}+c_{n-1} \quad (n=1\;,\;2\;,\;\cdots\;) \end{array} \right. \cdots$$
 圏
$$c_n=\frac{1}{4}b_{n-1}$$

$$a_{n-1}+b_{n-1}+c_{n-1}=1 \; (n=1\;,\;2\;,\;\cdots\;)$$
 であることから 、② は

$$\begin{split} b_n &= (1 - b_{n-1}) + \frac{1}{2} b_{n-1} \\ &= -\frac{1}{2} b_{n-1} + 1 \quad (n = 1, 2, \cdots) \cdots \textcircled{4} \end{split}$$

① より,
$$b_{n-1} \!=\! 4\,a_n \cdots$$
①′ であるため, $b_n \!=\! 4\,a_{n+1}\,\cdots$ ①′′

①′, ①″を④に代入すると

せっかく a_0 と拡張したのですが、 $n=1,\ 2,\ \cdots$ のときしかこの 漸化式は成立しません

$$4a_{n+1} = -\frac{1}{2} \cdot 4a_n + 1$$
 であるため,

$$a_{n+1} = -\frac{1}{2}a_n + \frac{1}{4} (n = 1, 2, \dots)$$

これは,
$$a_{n+1} - \frac{1}{6} = -\frac{1}{2}\left(a_n - \frac{1}{6}\right)$$
 と変形できるため

$$\begin{aligned} a_n - \frac{1}{6} &= \left(a_1 - \frac{1}{6}\right) \left(-\frac{1}{2}\right)^{n-1} \\ &= -\frac{1}{6} \left(-\frac{1}{2}\right)^{n-1} \end{aligned}$$

ゆえに, n=1, 2, … に対して

$$a_n = \frac{1}{6} - \frac{1}{6} \cdot \left(-\frac{1}{2} \right)^{n-1}$$

$$=\frac{1}{6}\left\{1-\left(-\frac{1}{2}\right)^{n-1}\right\}$$
 ...

さらに,
$$\lim_{n\to\infty}a_n=\frac{1}{6}$$
 … 圏

【総括】

状態推移を追っていき、確率漸化式を立てた後は、数列の漸化式の問題です。

今回は, $a_n+b_n+c_n=1$ となるタイプだったので,これをうまく活用して 処理していきました。

(場数を踏むと、この活用は定番の処理だという感想がもてるようになってきます。)

本問で注意すべきは漸化式の定義域であり、①' である $b_{n-1}=4\,a_n$ は

$$b_0 = 4a_1$$
, $b_1 = 4a_2$, $b_2 = 4a_3$,

といったように, $n=1, 2, 3, \cdots$ に対して定義できるものです。

それを ④ に代入して得られる $a_{n+1}=-\frac{1}{2}a_n+\frac{1}{4}$ という漸化式について も n=1 , 2 , \cdots が定義域と言うことになります。

なお, $a_{n-1}+b_{n-1}+c_{n-1}=1$ に気が付かなかった場合,

① ,③ より, $a_{n-1} = \frac{1}{4} b_{n-2}$, $c_{n-1} = \frac{1}{4} b_{n-2}$ であり,② に代入すること

$$b_n = \frac{1}{4}b_{n-2} + \frac{1}{2}b_{n-1} + \frac{1}{4}b_{n-2}$$
, すなわち $b_n = \frac{1}{2}b_{n-1} + \frac{1}{2}b_{n-2}$

文字消去 という考え方です。