θ を $0<\theta<\frac{\pi}{4}$ をみたす定数とし,x の 2 次方程式

$$x^2 - (4\cos\theta)x + \frac{1}{\tan\theta} = 0 \cdot \cdots \cdot (*)$$

を考える。以下の問いに答えよ。

- (1) 2次方程式 (*) が実数解をもたないような θ の値の範囲を求めよ。
- (2) θ が (1) で求めた範囲にあるとし、(*) の 2 つの虚数解を α 、 β と する。ただし、 α の虚部は β の虚部より大きいとする。複素数平面 上の 3 点 A (α)、B (β)、O (0) を通る円の中心を C (γ) とするとき、 θ を用いて γ を表せ。
- (3) 点 O, A, C を (2) のように定めるとき, 三角形 OAC が直角三角 形になるような θ に対する $\tan\theta$ の値を求めよ。

< '21 九州大 >